Hopf algebras of dimension pq

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FURTHER RESULTS ON SEMISIMPLE HOPF ALGEBRAS OF DIMENSION pq

Let p, q be distinct prime numbers, and k an algebraically closed field of characteristic 0. Under certain restrictions on p, q, we discuss the structure of semisimple Hopf algebras of dimension pq. As an application, we obtain the structure theorems for semisimple Hopf algebras of dimension 9q over k. As a byproduct, we also prove that odd-dimensional semisimple Hopf algebras of dimension less...

متن کامل

Hopf Algebras of Dimension

Let H be a finite-dimensional Hopf algebra over an algebraically closed field of characteristic 0. If H is not semisimple and dim(H) = 2n for some odd integers n, then H or H * is not unimodular. Using this result, we prove that if dim(H) = 2p for some odd primes p, then H is semisimple. This completes the classification of Hopf algebras of dimension 2p. In recent years, there has been some pro...

متن کامل

Hopf Algebras of Dimension p

Let p be a prime number. It is known that any non-semisimple Hopf algebra of dimension p over an algebraically closed field of characteristic 0 is isomorphic to a Taft algebra. In this exposition, we will give a more direct alternative proof to this result.

متن کامل

Hopf Algebras of Dimension 14

Let H be a finite dimensional non-semisimple Hopf algebra over an algebraically closed field k of characteristic 0. If H has no nontrivial skew-primitive elements, we find some bounds for the dimension of H 1 , the second term in the coradical filtration of H. Using these results, we are able to show that every Hopf algebra of dimension 14 is semisimple and thus isomorphic to a group algebra or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2004

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2003.11.008